>百科大全> 列表
正反比例的知识点归纳
时间:2025-04-23 09:17:35
答案

一、 变化的量

生活中存在着大量互相依存的变量,一种量变化,另一种量也随着变化。

二、 正比例

1. 正比例的意义:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。如果用字母x和y表示两种相关联的量,用字母k表示它们的比值(一定),正比例关系可以表示为:y/x=k(一定)。

2. 应用正比例的意义判断两种量是否成正比例:有些相关联的量,虽然也是一种量随着另一种量的变化而变化,但它们相对应的数的比值不一定,就不成正比例,如被减数与差,正方形的面积与边长等。

三、 画一画

正比例的图像是一条直线。

四、 反比例

1. 反比例的意义:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。如果用字母x和y表示两种相关联的量,用k表示它们的乘积,反比例的关系式可以表示为:x·y=k(一定)。

2. 判断两个量是不是成反比例:要先想这两个量是不是相关联的量;再运用数量关系式进行判断,看这两个量的积是否一定;最后作出结论。

五、 观察与探究

当两个变量成反比例关系时,所绘成的图像是一条光滑曲线。

六、 图形的放缩

一幅图放大或缩小,只有按照相同的比来画,画的图才像。

七、 比例尺

1. 比例尺:图上距离与实际距离的比,叫做这幅图的比例尺。图上距离=实际距离×比例尺 实际距离=图上距离÷比例尺

2. 比例尺的分类:比例尺根据实际距离是缩小还是扩大,分为缩小比例尺和放大比例尺。根据表现形式的不同,比例尺还可分为线段比例尺和数值比例尺。

3. 比例尺的应用:

已知比例尺和图上距离,求实际距离

比例尺=图上距离÷实际距离

图上距离=实际距离×比例尺

实际距离=图上距离÷比例尺

推荐
Copyright © 2025 尺寸百科网 |  琼ICP备2022020623号 |  网站地图